
Công ty TNHH thiết kế giám sát xây dựng Phương Nam

http://vietnam12h.com/

Exercise 3 – Extending Types with Extension Methods

Extension methods provide a way for developers to extend the functionality of existing types by defining

new methods that are invoked using the normal instance method syntax. Extension methods are static

methods that are declared by specifying the keyword this as a modifier on the first parameter of the

methods. In this exercise, imagine the Order class was precompiled and a library was provided. New

features can still be built on top of the Order class. To do this a new class is created to hold these

extension methods. In addition, you will extend the List<T> generic class, adding an extension method to

append the list to another.

Task 1 – Declaring Extension Methods

This task begins by extending a class using C# 2.0 and then utilizes the C# 3.0 Extension Methods feature.

1. Add a new static class, Extensions, to the NewLanguageFeatures namespace:

 namespace NewLanguageFeatures

 {

 public static class Extensions

 {

 }

 public class Customer

 …

2. In this new class add a method, Compare that given two customers checks to see if all the properties

of each are the same, and if so returns true.

 public static class Extensions

 {

 public static bool Compare(Customer customer1, Customer customer2)

 {

 if (customer1.CustomerID == customer2.CustomerID &&

 customer1.Name == customer2.Name &&

 customer1.City == customer2.City)

 {

 return true;

 }

 return false;

 }

}

3. Rewrite Main to compare a new Customer with all the others in the list to see if it is present already:

static void Main(string[] args)

{

 var customers = CreateCustomers();

 var newCustomer = new Customer(10)

 {

 Name = "Diego Roel",

 City = "Madrid"

 };

 foreach (var c in customers)

Công ty Hóa Chất Xây Dựng Phương Nam

http://vietnam12h.com

Công ty TNHH thiết kế giám sát xây dựng Phương Nam

http://vietnam12h.com/

 {

 if (Extensions.Compare(newCustomer, c))

 {

 Console.WriteLine("The new customer was already in the list");

 return;

 }

 }

 Console.WriteLine("The new customer was not in the list");

}

4. Press Ctrl+F5 to build and run the application, which displays “The new customer was not in the list”.

Press any key to terminate the application.

With C# 3.0, you can now define an extension method that can be invoked using

instance method syntax. An extension method is declared by specifying the keyword this

as a modifier on the first parameter of the method.

5. Add the modifier this to the first parameter accepted by Compare:

public static class Extensions

{

 public static bool Compare(this Customer customer1, Customer customer2)

 {

 …

6. In the Main method, change the invocation of Compare to use the instance method syntax, making

Compare appear as a method of the Order class:

foreach (var c in customers)

{

 if (newCustomer.Compare(c))

 {

 Console.WriteLine("The new customer was already in the list");

 return;

 }

…

7. Press Ctrl+F5 to build and run the application again and verify that it displays the same output, then

press any key to close the console window and terminate the application.

Extension methods are only available if declared in a static class and are scoped by

the associated namespace. They then appear as additional methods on the types that

are given by their first parameter.

Task 2 – Using Extension Methods with Generic Types

Extension methods can be added to any type, including the generic types such as List<T> and

Dictionary<K, V>.

8. Add an extension method, Append, to the Extensions class that combines all elements of two

List<T> objects into a single List<T>:

Công ty Hóa Chất Xây Dựng Phương Nam

http://vietnam12h.com

Công ty TNHH thiết kế giám sát xây dựng Phương Nam

http://vietnam12h.com/

public static class Extensions

{

 public static List<T> Append<T>(this List<T> a, List<T> b)

 {

 var newList = new List<T>(a);

 newList.AddRange(b);

 return newList;

 }

 public static bool Compare(this Customer customer1, Customer customer2)

 {

 …

9. return to the Main method and use the Append method to append the addedCustomers list to the

customers list. Check this new list to see if the newCustomer is in the updated list:

static void Main(string[] args)

{

 var customers = CreateCustomers();

 var addedCustomers = new List<Customer>

 {

 new Customer(9) { Name = "Paolo Accorti", City = "Torino" },

 new Customer(10) { Name = "Diego Roel", City = "Madrid" }

 };

 var updatedCustomers = customers.Append(addedCustomers);

 var newCustomer = new Customer(10)

 {

 Name = "Diego Roel",

 City = "Madrid"

 };

 foreach (var c in updatedCustomers)

 {

 …

10. Press Ctrl+F5 to build and run the application, which now displays “The new customer was already

in the list”. Press any key to terminate the application.

Extension methods provide an elegant way to extend types with functionality you

develop, making the extensions appear to be part of the original types. Extension

methods enable new functionality to be added to an already compiled class. This

includes user created classes as well as .NET classes such as List<T>.

Công ty Hóa Chất Xây Dựng Phương Nam

http://vietnam12h.com

